48 research outputs found

    Evaluación y análisis de la conectividad ecológica de bosques maduros aplicado a la marta (Martes martes) como especie de interés en la provincia de Álava.

    Get PDF
    En el trabajo que se presenta se analizó la conectividad funcional del paisaje alavés y los territorios limítrofes utilizando la marta (Martes martes) como especie objetivo por su relación y comportamiento en bosques maduros. Para ello, en primer lugar, se identifican las manchas de hábitat potenciales (teselas de hábitat o parches de hábitat) existentes utilizando los Sistemas de Información Geográfica extrayéndolas de la cartografía de coberturas de suelo Corine Land Cover 2018. Después, se define un mapa de resistencias el cual describe la dificultad o facilidad del paisaje al movimiento de la marta. El modelo de conectividad elegido se basa en la teoría de grafos, de forma que el paisaje se asimila a un grafo con nodos (teselas de hábitat) y enlaces (caminos de mínimo coste). Mediante el cálculo de las distancias efectivas (caminos de mínimo coste) entre teselas de hábitat se definen los enlaces entre distintos nodos obteniendo así el modelo de conectividad. Se calcula el índice de probabilidad de conectividad (PC), y las fracciones que lo constituyen (dPCintra, dPCflux y dPCconnector) para cada tesela de hábitat. Utilizando esta misma metodología se comparan tres escenarios de restauración de hábitat potencial de seis espacios distintos con el objetivo de aumentar la conectividad funcional de la marta en el territorio alavés. Un pequeño conjunto de teselas obtiene los mejores valores respecto a la conectividad funcional y en las fracciones. Los demás nodos, aunque se encuentran bien conectados, las pequeñas superficies que abarcaban los hacen poco probables de asentar una población de martas. Aun así, la provincia alavesa por la conservación y la extensión de los hábitats de bosques autóctonos se muestra como el territorio más apropiado para el flujo de fauna forestal.<br /

    Simulación aplicada a la gestión de stocks

    Get PDF
    En este trabajo se estudia la aplicación de la simulación a dos modelos de gestión de stocks, el modelo de cantidad fija de pedido (EOQ) y el modelo de periodo de tiempo fijo con el fin de analizar el desempeño de cada sistema bajo una demanda y plazo de entrega variables. Esta herramienta permitirá a la gerencia tomar la mejor decisión en su gestión de stocks, esto es, mantener bajo el costo de stocks cumpliendo con el plan de producción y con los requerimientos de nivel de servicio al cliente.Facultad de Ingenierí

    Simulación aplicada a la gestión de stocks

    Get PDF
    En este trabajo se estudia la aplicación de la simulación a dos modelos de gestión de stocks, el modelo de cantidad fija de pedido (EOQ) y el modelo de periodo de tiempo fijo con el fin de analizar el desempeño de cada sistema bajo una demanda y plazo de entrega variables. Esta herramienta permitirá a la gerencia tomar la mejor decisión en su gestión de stocks, esto es, mantener bajo el costo de stocks cumpliendo con el plan de producción y con los requerimientos de nivel de servicio al cliente.Facultad de Ingenierí

    Simulación aplicada a la gestión de stocks

    Get PDF
    En este trabajo se estudia la aplicación de la simulación a dos modelos de gestión de stocks, el modelo de cantidad fija de pedido (EOQ) y el modelo de periodo de tiempo fijo con el fin de analizar el desempeño de cada sistema bajo una demanda y plazo de entrega variables. Esta herramienta permitirá a la gerencia tomar la mejor decisión en su gestión de stocks, esto es, mantener bajo el costo de stocks cumpliendo con el plan de producción y con los requerimientos de nivel de servicio al cliente.Facultad de Ingenierí

    Acute Necrotizing Ulcer Gingivitis. Treatment of An Urgency

    Get PDF
    Introducción: La Gingivitis Ulcero necrotizante Aguda (GUNA) es una enfermedad inflamatoria, dolorosa y destructiva que puede afectar tanto la encía marginal como la papilar, relacionando su patogenia con posibles factores de riesgos. Por las molestias que produce al paciente Y sus posibles complicaciones, requiere atención inmediata siendo considerada una urgencia estomatológica. Se mostrará la resolución de un caso clínico que concurrió a la Clínica de P.P.S. y se trató en conjunto con Alumnos y Docentes de P.P.S. y Periodoncia.Introduction: Acute Necrotizing Ulcer Gingivitis is an inflammatory, painful and destructive disease that can affect both the marginal and papillary gums, associating its pathogenesis with possible risk factors. Due to the discomfort it produces to the patient and its possible complications, it requires immediate attention, being considered a stomatological emergency. The resolution of a clinical case that attended the P.P.S. Clinic will be shown and it was discussed in conjunction with Students and P.P.S. and Periodontology Teachers.Facultad de Odontologí

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.publishedVersio

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
    corecore